Support:Documents:Examples:Estimate Input Delay and Rate Constants
Estimating Input Delay and Rate Constants
This example demonstrates an approach to simultaneously estimating input function delay along with parameters of the 1-tissue compartment (e.g. blood flow) model. For the sake of generality, this could be interpreted as a
Tissue uptake
This model has one tissue compartment. Material in the blood is assumed to rapidly exchange with that in (extravascular) tissue. The tissue model has two rate constants: K1 and k2 and is depicted in the diagram:
It can also be described by the differential equation:
dCT/dt = K1 Cp - k2 CT
where CT is the tissue concentration and Cp is the plasma concentration of radioactive water.
CT and Cp are interpreted as either molar concentrations (Salinas, Muzic and Saidel 2007).
Input function
This example also demonstrates how to temporally align measured input function data to the tissue (image) data. Here the plasma concentration vs. time t is modeled as
Cp(t, tau) = M(t-d) if t >= tau; 0 if t < tau .
M(t) is the measured input data, tau is the delay parameter to estimate, and t is the time in minutes.
Because the delay tau is estimated in this example, it will be handy to note that derivative of the input with respect to delay is
dCp(t)/d tau = - dM/dt|t-tau
For this example, M is determined by using linear interpolation to interpolate between measured values. The interpolation is implemented using piecewise polynomial framework (and it could be easily modified to accommodate cubic spline interpolation).
Let inputData be a two-column matrix with column 1 holding sample times and column 2 holding the sampled input concentrations.
The interpolation coefficients may be calculated using the lspline function
ppM = lspline(inputData(:,1), inputData(:,2));
To evaluate the derivative dCp/dt, which can be determined in terms of dM/dt by analytically differentiating the interpolating polynomial.
[breaks, coefs, l, k, d] = unmkpp(ppM); ppdMdtau = mkpp(breaks, repmat(k-1:-1:1,d*l,1) .* coefs(:,1:k-1), d);
The input function is then implemented as
function [Cp, dCpdtau] = DelayExampleInput(parm, t, X) if (nargout > 0), t = t(:); % ensure t is a column vector tau = parm(1); % delay ppC = X{1}; % piecewise-polynomial coefficients for Cp Cp = zeros(size(t)); f = find(t > tau); Cp(f) = ppval(ppC, t(f) - tau); if (nargout > 1), ppdCdt = X{2}; % piecewise-polynomial coefficients for derivative dCpdtau = zeros(size(t)); dCpdtau(f) = -ppval(ppdCdt, t(f) - tau); end end
Example: Estimating Input Delay and Rate Constants
In this example, the model output are assumed to represent measurements of CT. (To keep the example simple, intravascular concentration of tracer is ignored.) The values of the parameters p = [K1; k2; tau] will be estimated.
Step 1 Create a 1-tissue compartment model
% create new, empty model cm = compartmentModel; % define default values for parameters cm = addParameter(cm, 'k1', 0.3); cm = addParameter(cm, 'k2', 0.5); cm = addParameter(cm, 'tau', 0.25); cm = addParameter(cm, 'sa', 1); % specific activity at t=0 cm = addParameter(cm, 'dk', 0.34); % decay constant cm = addParameter(cm, 'tau', 0.25); % time delay % add compartments cm = addCompartment(cm, 'CT'); cm = addCompartment(cm, 'J'); % define the input(first column is time, second it concentration) inputData = [ 0 0 0.0500 0 0.1000 0 0.1500 14.5234 0.2000 52.1622 0.2500 76.6730 0.3000 91.6416 0.4000 103.0927 0.5000 100.9401 0.7000 83.5343 0.8000 74.3628 1.0000 59.7726 1.2500 48.7530 1.5000 43.0772 1.7500 40.1924 2.0000 38.6236 ]; % determine spline coefficients for linear interpolation ppM = lspline(inputData(:,1), inputData(:,2)); % analytically calculate derivative [breaks, coefs, l, k, d] = unmkpp(ppM); ppdMdtau = mkpp(breaks, repmat(k-1:-1:1,d*l,1) .* coefs(:,1:k-1), d); X = {ppM, ppdMdtau}; cm = addInput(cm, 'Cp','sa','dk', 'DelayExampleInput', 'tau', X); % connect compartments and inputs cm = addLink(cm, 'L', 'Cp', 'CT', 'k1'); cm = addLink(cm, 'K', 'CT', 'J', 'k2'); % define the activity concentration in tissue pixel cm = addOutput(cm, 'TissuePixel', {'CT','1'}, {'Cp','0'}); % specify scan frame times st = [[0:5:85]' [5:5:90]']/60; % division by 60 converts sec to min cm = set(cm, 'ScanTime', st); midScanTime = (st(:,1) + st(:,2)) / 2; % solve the model [sol,solIndex] = solve(cm);
Step 2 Use model output as CT (perfect "data")
% Set parameters: initial guess, lower and upper bounds for K1, k2 and tau pinit=[0.01;0.01;0.01]; lb =[0.01;0.01;0.01]; ub =[1;1;5]; % specify parameters to be adjusted in fitting cm=addSensitivity(cm,'k1','k2','tau'); % Experimental Data to be fit cm=set(cm,'ExperimentalData',sol(:,3)); % Perform curve fitting [pfit,qfitnull,modelfit,pp1,output]=fitGen(cm,pinit,lb,ub,'OLS');
Step 3 Examine model outputs for "data" and fit
% Solve model using estimated parameters cm1=cm; cm1=set(cm1,'ParameterValue','k1',pfit(1)); cm1=set(cm1,'ParameterValue','k2',pfit(2)); cm1=set(cm1,'ParameterValue','tau',pfit(3)); est_sol=solve(cm1); % solve model using initial parameters cm1=set(cm1,'ParameterValue','k1',pinit(1)); cm1=set(cm1,'ParameterValue','k2',pinit(2)); cm1=set(cm1,'ParameterValue','tau',pinit(3)); est_sol_init=solve(cm1); plot(midScanTime,sol(:,3),'o',midScanTime,est_sol(:,3),'r-',midScanTime,est_sol_init(:,3),'g-','LineWidth',2); xlabel('Minutes'); ylabel('KBq/ml'); legend('Data', 'Fit','Initial Guess');