Learn more...
COMKAT, which stands for 'COmpartment Model Kinetic Analysis Tool', is MATLAB software for compartmental modeling oriented to nuclear medicine applications (PET & SPECT). It supports models of a wide range complexity including multiple injection, receptor model with saturation. It supports many image formats, including DICOM images. Using either the command line interface or GUI, models are easily specified, solved or used to fit experimental data. Sensitivity equations are supported. No mathematical derivations are required on the part of the user.
COMKAT developers
Dr. Raymond Muzic, PhD is the main COMKAT developer. He is an associate professor of Radiology in Case Western Reserve University. Go to People:mainpage to find out more about the people involved in developing COMKAT.
Inside COMKAT
COMKAT serves as a bridge between biomedical imaging and modeling analysis. It can be divided into the following components:
- Command line functions
The command line functions of COMKAT provides functionalities to both imaging and modeling analysis. You can write a Matlab script to construct a compartment model with as simple as several lines. Models can be solved or used to estimate parameters. These functions are the basis of COMKAT because all the GUIs call underlying functions.
- COMKAT GUI
This GUI is designed for compartment modeling. Input and output can be loaded from various file formats. You may also set the output directly from images with COMKAT Image Tool. You can use the COMKAT GUI to fit experimental data and simply to simulate model output.
- COMKAT Image Tool
This GUI is designed for image display, fusion and region of interest. We support various image formats.
- COMKAT Input function GUI
To load input functions from files or functions, a user can use the input function GUI.
COMKAT GUI |
COMKAT Image Tool |
System requirement
Available version
COMKAT was originally designed to run as a Matlab toolbox. It can run as two modes now:
- Matlab mode
It is recommended that the users use COMKAT under Matlab.
- Standalone application mode
For those who does not have Matlab available, we have compiled COMKAT as a standalone executable now. Note: This would require Matlab Component Runtime (MCR)[1]. If you cannot obtain MCR, please contact us.
Operating system
COMKAT has been tested on Windows XP, MacOS 10.4 and Linux.
Matlab
We recommend using COMKAT under Matlab R14 or newer.
License
COMKAT is free for non-commercial use. Please contact us [2] if you are considering using it in commercial purposes.
Terms of Usage for registering for a user on COMKAT website:
1. I have registered (free for noncommercial use) as a user at comkat.uhrad.com and agree to use COMKAT for non-commercial research. I will not share my copy of COMKAT with others who have not registered as COMKAT users. Note: Commercial use requires written permission of Ray Muzic (muzic@uhrad.com)
2. Via citation, I will properly acknowledge use of COMKAT in grant applications, proposals, manuscripts, etc....
3. I will inform Ray Muzic (muzic@uhrad.com) of citations to COMKAT in my publications so that he can use this information to seek support for COMKAT.
4. If I modify COMKAT for my own use, I will clearly identify in publications, grant applications, etc...., that I have used a customized version of COMKAT. (I will consider sharing my modifications with Ray Muzic. If they are of general interest, and all parties agree, modifications might be made available to others (with proper acknowledgement for efforts).
5. I have read and understand the Disclaimer which essentially states: COMKAT IS NOT INTENDED FOR CLINICAL / DIAGNOSTIC USE. USER ASSUMES ALL RISK.
Publication
Reference
To cite COMKAT , please refer to the following: Muzic RF, Jr., Cornelius S. COMKAT: compartment model kinetic analysis tool. J Nucl Med. Apr 2001;42(4):636-645. [3]
Papers using COMKAT from our group
- Salinas CA, Pagel MD, Muzic Jr RF. Measurement of arterial input functions in rats. Paper presented at: 2004 Society for Molecular Imaging Annual Meeting, 2004; St. Louis.
- Muzic RF, Jr., Christian BT. Evaluation of objective functions for estimation of kinetic parameters. Med Phys. Feb 2006;33(2):342-353.