Difference between revisions of "Publications:mainpage"
(New page: '''How people use COMKAT''' == Peer-reviewed Articles == ==== Before COMKAT's first public release ==== 1. Muzic RF, Jr., Nelson AD, Saidel GM, Miraldi F. Optimal Experiment Design fo...) |
|||
Line 5: | Line 5: | ||
==== Before COMKAT's first public release ==== | ==== Before COMKAT's first public release ==== | ||
+ | |||
1. Muzic RF, Jr., Nelson AD, Saidel GM, Miraldi F. Optimal Experiment Design for PET Quantification of Receptor Concentration. IEEE Trans.Med.Imag. 1996;15:2-12. | 1. Muzic RF, Jr., Nelson AD, Saidel GM, Miraldi F. Optimal Experiment Design for PET Quantification of Receptor Concentration. IEEE Trans.Med.Imag. 1996;15:2-12. | ||
Line 15: | Line 16: | ||
− | ==== | + | ==== Since COMKAT's first public release ==== |
4. Yoder KK, Wang C, Morris ED. Change in binding potential as a quantitative index of neurotransmitter release is highly sensitive to relative timing and kinetics of the tracer and the endogenous ligand. J.Nucl.Med. 2004;45:903-911. | 4. Yoder KK, Wang C, Morris ED. Change in binding potential as a quantitative index of neurotransmitter release is highly sensitive to relative timing and kinetics of the tracer and the endogenous ligand. J.Nucl.Med. 2004;45:903-911. | ||
Line 38: | Line 39: | ||
14. Normandin MD, Morris ED. Temporal resolution of ntPET using either arterial or reference region-derived plasma input functions. Conf.Proc IEEE Eng Med.Biol.Soc. 2006;1:2005-2008. | 14. Normandin MD, Morris ED. Temporal resolution of ntPET using either arterial or reference region-derived plasma input functions. Conf.Proc IEEE Eng Med.Biol.Soc. 2006;1:2005-2008. | ||
+ | |||
+ | 15. Salinas CA., Muzic RF Jr., Saidel, GM. Validity of model approximations for receptor-ligand kinetics in nuclear medicine, Med Phys. 2007 May;34(5):1693-703. [http://www.ncbi.nlm.nih.gov/pubmed/17555251?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum PubMed] | ||
− | + | 16. Constantinescu CC, Bouman C, Morris ED. Nonparametric extraction of transient changes in neurotransmitter concentration from dynamic PET data. IEEE Trans.Med.Imaging 2007;26:359-373. | |
− | + | 17. Morris ED, Yoder KK. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics. J.Cereb.Blood Flow Metab 2007;27:606-617. | |
− | + | 18. Salinas C, Muzic RF, Jr., Ernsberger P, Saidel GM. Robust experiment design for estimating myocardial beta adrenergic receptor concentration using PET. Med.Phys. 2007;34:151-165. [http://www.ncbi.nlm.nih.gov/pubmed/17278500?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum PubMed] | |
− | + | 19. Saad A, Smith B, Hamarneh G, et al: Simultaneous segmentation, kinetic parameter estimation, and uncertainty visualization of dynamic PET images; Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv. 2007;10(Pt 2):726-33. [http://www.ncbi.nlm.nih.gov/pubmed/18044633?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum PubMed] | |
+ | |||
+ | 20. Landau BR, Spring-Robinson CL, Muzic RF, Jr., et al. 6-Fluoro-6-deoxy-D-glucose as a tracer of glucose transport. Am.J.Physiol Endocrinol.Metab 2007;293:E237-E245 [http://www.ncbi.nlm.nih.gov/pubmed/17405828?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum Pubmed] | ||
+ | |||
+ | 21. Normandin MD, Morris ED. Estimating neurotransmitter kinetics with ntPET: a simulation study of temporal precision and effects of biased data. Neuroimage 2008;39:1162-1179. | ||
− | + | 22. Fang YH, Muzic RF, Jr. Spillover and Partial-Volume Correction for Image-Derived Input Functions for Small-Animal 18F-FDG PET Studies. J.Nucl.Med. 2008;49:606-614. [http://www.ncbi.nlm.nih.gov/pubmed/18344438?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum PubMed] | |
− | + | 23. Constantinescu CC, Yoder KK, Kareken DA, et al. Estimation from PET data of transient changes in dopamine concentration induced by alcohol: support for a non-parametric signal estimation method. Phys.Med.Biol. 2008;53:1353-1367. [http://www.ncbi.nlm.nih.gov/pubmed/18296766?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum PubMed] | |
− | + | 24. Morris ED, Normandin MD, Schiffer WK. Initial comparison of ntPET with microdialysis measurements of methamphetamine-induced dopamine release in rats: support for estimation of dopamine curves from PET data. Mol.Imaging Biol. 2008;10:67-73. [http://www.ncbi.nlm.nih.gov/pubmed/18176804?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum PubMed] | |
− | |||
− | + | == Manuscripts Under Review == | |
+ | To do... start this list... | ||
Revision as of 12:49, 18 April 2008
How people use COMKAT
Peer-reviewed Articles
Before COMKAT's first public release
1. Muzic RF, Jr., Nelson AD, Saidel GM, Miraldi F. Optimal Experiment Design for PET Quantification of Receptor Concentration. IEEE Trans.Med.Imag. 1996;15:2-12.
2. Muzic RF, Saidel GM, Zhu N, Nelson AD, Zheng L, Berridge MS. Iterative Optimal Design of PET Experiments for Estimating b-Adrenergic Receptor Concentration. Med.& Biol.Engr.& Comput. 2000;38:593-602.
The seminal article
3. Muzic RF, Cornelius S. COMKAT: Compartment Model Kinetic Analysis Tool. J.Nucl.Med. 2001;42:636-645.
Since COMKAT's first public release
4. Yoder KK, Wang C, Morris ED. Change in binding potential as a quantitative index of neurotransmitter release is highly sensitive to relative timing and kinetics of the tracer and the endogenous ligand. J.Nucl.Med. 2004;45:903-911.
5. Morris ED, Christian BT, Yoder KK, Muzic RF, Jr. Estimation of local receptor density, B'max, and other parameters via multiple-injection positron emission tomography experiments. Methods Enzymol. 2004;385:184-213.
6. Christian BT, Narayanan T, Shi B, Morris ED, Mantil J, Mukherjee J. Measuring the in vivo binding parameters of [18F]-fallypride in monkeys using a PET multiple-injection protocol. J.Cereb.Blood Flow Metab 2004;24:309-322.
7. Pain F, Laniece P, Mastrippolito R, Gervais P, Hantraye P, Besret L. Arterial input function measurement without blood sampling using a beta-microprobe in rats. J.Nucl.Med. 2004;45:1577-1582.
8. Morris ED, Yoder KK, Wang C, et al. ntPET: a new application of PET imaging for characterizing the kinetics of endogenous neurotransmitter release. Mol.Imaging 2005;4:473-489.
9. Bingham EM, Dunn JT, Smith D, et al. Differential changes in brain glucose metabolism during hypoglycaemia accompany loss of hypoglycaemia awareness in men with type 1 diabetes mellitus. An [11C]-3-O-methyl-D-glucose PET study. Diabetologia 2005;48:2080-2089.
10. Yoder KK, Kareken DA, Seyoum RA, et al. Dopamine D(2) receptor availability is associated with subjective responses to alcohol. Alcohol Clin.Exp.Res. 2005;29:965-970.
11. Salinas CA, Muzic RF, Jr., Ernsberger P. PET Imaging of Myocardial B-Adrenergic Receptors with Fluorocarazolol: Lack of Interference by Endogenous Catecholamines. J.Cardiovasc.Pharmacol. 2005;
12. Muzic RF Jr, Christian BT. Evaluation of Objective Functions for Estimation of Kinetic Parameters. Med.Phys. 2006;33(2):342-53. PubMed
13. Christian BT, Lehrer DS, Shi B, et al. Measuring dopamine neuromodulation in the thalamus: using [F-18]fallypride PET to study dopamine release during a spatial attention task. Neuroimage. 2006;31:139-152.
14. Normandin MD, Morris ED. Temporal resolution of ntPET using either arterial or reference region-derived plasma input functions. Conf.Proc IEEE Eng Med.Biol.Soc. 2006;1:2005-2008.
15. Salinas CA., Muzic RF Jr., Saidel, GM. Validity of model approximations for receptor-ligand kinetics in nuclear medicine, Med Phys. 2007 May;34(5):1693-703. PubMed
16. Constantinescu CC, Bouman C, Morris ED. Nonparametric extraction of transient changes in neurotransmitter concentration from dynamic PET data. IEEE Trans.Med.Imaging 2007;26:359-373.
17. Morris ED, Yoder KK. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics. J.Cereb.Blood Flow Metab 2007;27:606-617.
18. Salinas C, Muzic RF, Jr., Ernsberger P, Saidel GM. Robust experiment design for estimating myocardial beta adrenergic receptor concentration using PET. Med.Phys. 2007;34:151-165. PubMed
19. Saad A, Smith B, Hamarneh G, et al: Simultaneous segmentation, kinetic parameter estimation, and uncertainty visualization of dynamic PET images; Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv. 2007;10(Pt 2):726-33. PubMed
20. Landau BR, Spring-Robinson CL, Muzic RF, Jr., et al. 6-Fluoro-6-deoxy-D-glucose as a tracer of glucose transport. Am.J.Physiol Endocrinol.Metab 2007;293:E237-E245 Pubmed
21. Normandin MD, Morris ED. Estimating neurotransmitter kinetics with ntPET: a simulation study of temporal precision and effects of biased data. Neuroimage 2008;39:1162-1179.
22. Fang YH, Muzic RF, Jr. Spillover and Partial-Volume Correction for Image-Derived Input Functions for Small-Animal 18F-FDG PET Studies. J.Nucl.Med. 2008;49:606-614. PubMed
23. Constantinescu CC, Yoder KK, Kareken DA, et al. Estimation from PET data of transient changes in dopamine concentration induced by alcohol: support for a non-parametric signal estimation method. Phys.Med.Biol. 2008;53:1353-1367. PubMed
24. Morris ED, Normandin MD, Schiffer WK. Initial comparison of ntPET with microdialysis measurements of methamphetamine-induced dopamine release in rats: support for estimation of dopamine curves from PET data. Mol.Imaging Biol. 2008;10:67-73. PubMed
Manuscripts Under Review
To do... start this list...
Abstracts
To do... start this list...
Conference Proceedings
To do... start this list...
Grants
1. Experimental Design for PET Receptor Models, PI: Raymond F. Muzic, Jr., Case Western Reserve University, Whitaker Foundation.
2. In Vivo Quantification of Heart Beta-Adrenergic Receptors, PI, Raymond F. Muzic, Jr., Case Western Reserve University, NIH R01 HL62399.
3. Quantitative FDG-PET for Imaging Woodchuck HCC, PI: Zhenghong Lee, Case Western Reserve University, NIH R01 CA095307.
4. COMKAT: Compartment Model Kinetic Analysis Tool for Quantitative Molecular Imaging, Case Western Reserve University, PI: Raymond Muzic, Jr., NIH R33 CA101073.
5. PET Evaluation of Hemorrhagic Shock and Resuscitation, PI: Vibhudutta Awasthi, University of TX Health Science Center at San Antonio, NIH R21/R33 EB005187.
6. Temporal Response of Dopamine to Alcohol Imaged via PET, PI: Evan D Morris, Indiana University, NIH R21 AA015077-01A2.