Difference between revisions of "Support:Documents:Examples:Estimate Parametric Image with Matlab Distributed Computing Server"
Line 3: | Line 3: | ||
===Overview=== | ===Overview=== | ||
− | Generally, the estimation of kinetic parameters is performed by ROI (region-of-interest)-based method. | + | Generally, the estimation of kinetic parameters is performed by a ROI (region-of-interest)-based method. It means that time-activity curves are generated by calculating mean activity from a user-defined ROI at each dynamic image data. This method is simple and robust. However, it cannot represent physiological properties of the tissue, which is heterogeneous. For example, drawing a ROI in a tumor may include many different tissue types, which have different biological properties. Therefore, a ROI-based method may fail to represent some significant characteristics of the tumor. One proposed method is to estimate kinetic parameters by a pixel-by-pixel method. It generates several parametric images, and pixel value in each parametric image represents a kinetic parameter. However, the generation of parametric images is time-consuming and the accuracy of parameter estimation is easily affected by image noise. To reduce the compuational time, one alternate approach is to use parallel computing, which speeds up processof parameter estimation by using several computers or multiple CPUs. Here, we propose an example to reduce the computational load of parameter estimation of the pixel-by-pixel method by Matlab Distributed Computing Server (MDCS). |
===Setting Matlab Distributed Computing Server (MDCS)=== | ===Setting Matlab Distributed Computing Server (MDCS)=== |
Revision as of 18:47, 24 March 2009
Estimation of Parametric Image using Matlab Distributed Computing Server (MDCS)
Overview
Generally, the estimation of kinetic parameters is performed by a ROI (region-of-interest)-based method. It means that time-activity curves are generated by calculating mean activity from a user-defined ROI at each dynamic image data. This method is simple and robust. However, it cannot represent physiological properties of the tissue, which is heterogeneous. For example, drawing a ROI in a tumor may include many different tissue types, which have different biological properties. Therefore, a ROI-based method may fail to represent some significant characteristics of the tumor. One proposed method is to estimate kinetic parameters by a pixel-by-pixel method. It generates several parametric images, and pixel value in each parametric image represents a kinetic parameter. However, the generation of parametric images is time-consuming and the accuracy of parameter estimation is easily affected by image noise. To reduce the compuational time, one alternate approach is to use parallel computing, which speeds up processof parameter estimation by using several computers or multiple CPUs. Here, we propose an example to reduce the computational load of parameter estimation of the pixel-by-pixel method by Matlab Distributed Computing Server (MDCS).
Setting Matlab Distributed Computing Server (MDCS)
Example
cm = compartmentModel; % start with a new, empty model % k1 k2 k3 k4 ktrueA=[0.1 ; 0.13 ; 0.06 ; 0.0068]; % define the parameters cm = addParameter(cm, 'sa', 1); % specific activity of injection, kBq/pmol cm = addParameter(cm, 'dk', log(2)/109.8); % radioactive decay cm = addParameter(cm, 'PV', 1); % (none) % region A cm = addParameter(cm, 'k1', 0.1); % 1/min cm = addParameter(cm, 'k2', 0.13); % 1/min cm = addParameter(cm, 'k3', 0.06); % ml/(pmol*min) cm = addParameter(cm, 'k4', 0.0068); % 1/min % define input function parameter vector cm = addParameter(cm, 'pin', [28; 0.75; 0.70; 4.134; 0.1191; 0.01043]); % define compartments cm = addCompartment(cm, 'Junk'); cm = addCompartment(cm, 'Ce' ); cm = addCompartment(cm, 'Cm' ); % define plasma input function % specifying function as refCp with parameters pin cm = addInput(cm, 'Cp', 'sa', 'dk', 'refCp', 'pin'); % plamsa pmol/ml % connect inputs and compartments % region A cm = addLink(cm, 'L', 'Cp', 'Ce', 'k1'); cm = addLink(cm, 'K', 'Ce', 'Junk','k2'); cm = addLink(cm, 'K', 'Ce', 'Cm', 'k3'); cm = addLink(cm, 'K', 'Cm', 'Ce', 'k4'); % specify scan begin and end times ttt=[ ones(6,1)*5/60; ... % 6 frames x 5 sec ones(2,1)*15/60; ... % 2 frames x 15 sec ones(6,1)*0.5;... % 6 frames x 0.5 min ones(3,1)*2;... % 3 frames x 2 min ones(2,1)*5;... % 2 frames x 5 min ones(10,1)*10]; % 10 frames x 10 min scant = [[0;cumsum(ttt(1:(length(ttt)-1)))] cumsum(ttt)]; cm = set(cm, 'ScanTime', scant); % define an outputs, one for each region cm = addOutput(cm, 'RegA', {'Ce', 'PV'; 'Cm', 'PV'}, {}); % solve model and generate example output [PET, PETindex]=solve(cm); data = PET(:,3); % data will have 3 columns, one for each region % specify parameters to be adjusted in fitting cm = addSensitivity(cm, 'pin', 'k1', 'k2', 'k3', 'k4'); % set parameter values initial guess, lower and upper bounds. values are in same order as ensitivities % _____________pin_________________ ______Reg______ pinit = [ 10; 0.4; 0.4; 3; 0.05; 0.01; 0.1; 0.1; 0.05; 0.001; ]; plb = [ 10; 0.1; 0.1; 1; 0.05; 0.001; 1e-3; 1e-3; 1e-3 ; 1e-5]; pub = [100; 2. ; 2. ; 10; 1. ; 0.05; 1.; 1.; 1.; 1.;]; noise_level = 0.1; for i=1:128*128 noisy_data(:,i) = [addNoiseDefault(data,noise_level,scant)]; end for pool_idx =1 mat_pool_n = [31 16 8 4 2 1]; for test_idx = 1:5 matlabpool(mat_pool_n(pool_idx)); t0 = clock; for_times = 128*128; parfor i=1:for_times cm2 = set(cm, 'ExperimentalData', noisy_data(:,i)); pfit(:,i) = fit(cm2, pinit, plb, pub); end time_consumed_parfor(pool_idx,test_idx) = etime(clock,t0); matlabpool close; end end