Difference between revisions of "Support:Documents:Examples:Estimate Parametric Image with Matlab Distributed Computing Server"
Jump to navigation
Jump to search
(New page: ==Estimation of Parametric Image using Matlab Distributed Computing Server== ===Overview=== ===Example=== <pre> cm = compartmentModel; % start with a new, empty model % k1 ...) |
|||
Line 1: | Line 1: | ||
− | ==Estimation of Parametric Image using Matlab Distributed Computing Server== | + | ==Estimation of Parametric Image using Matlab Distributed Computing Server (MDCS)== |
===Overview=== | ===Overview=== | ||
+ | Underwork | ||
===Example=== | ===Example=== |
Revision as of 16:55, 24 March 2009
Estimation of Parametric Image using Matlab Distributed Computing Server (MDCS)
Overview
Underwork
Example
cm = compartmentModel; % start with a new, empty model % k1 k2 k3 k4 ktrueA=[0.1 ; 0.13 ; 0.06 ; 0.0068]; % define the parameters cm = addParameter(cm, 'sa', 1); % specific activity of injection, kBq/pmol cm = addParameter(cm, 'dk', log(2)/109.8); % radioactive decay cm = addParameter(cm, 'PV', 1); % (none) % region A cm = addParameter(cm, 'k1', 0.1); % 1/min cm = addParameter(cm, 'k2', 0.13); % 1/min cm = addParameter(cm, 'k3', 0.06); % ml/(pmol*min) cm = addParameter(cm, 'k4', 0.0068); % 1/min % define input function parameter vector cm = addParameter(cm, 'pin', [28; 0.75; 0.70; 4.134; 0.1191; 0.01043]); % define compartments cm = addCompartment(cm, 'Junk'); cm = addCompartment(cm, 'Ce' ); cm = addCompartment(cm, 'Cm' ); % define plasma input function % specifying function as refCp with parameters pin cm = addInput(cm, 'Cp', 'sa', 'dk', 'refCp', 'pin'); % plamsa pmol/ml % connect inputs and compartments % region A cm = addLink(cm, 'L', 'Cp', 'Ce', 'k1'); cm = addLink(cm, 'K', 'Ce', 'Junk','k2'); cm = addLink(cm, 'K', 'Ce', 'Cm', 'k3'); cm = addLink(cm, 'K', 'Cm', 'Ce', 'k4'); % specify scan begin and end times ttt=[ ones(6,1)*5/60; ... % 6 frames x 5 sec ones(2,1)*15/60; ... % 2 frames x 15 sec ones(6,1)*0.5;... % 6 frames x 0.5 min ones(3,1)*2;... % 3 frames x 2 min ones(2,1)*5;... % 2 frames x 5 min ones(10,1)*10]; % 10 frames x 10 min scant = [[0;cumsum(ttt(1:(length(ttt)-1)))] cumsum(ttt)]; cm = set(cm, 'ScanTime', scant); % define an outputs, one for each region cm = addOutput(cm, 'RegA', {'Ce', 'PV'; 'Cm', 'PV'}, {}); % solve model and generate example output [PET, PETindex]=solve(cm); data = PET(:,3); % data will have 3 columns, one for each region % specify parameters to be adjusted in fitting cm = addSensitivity(cm, 'pin', 'k1', 'k2', 'k3', 'k4'); % set parameter values initial guess, lower and upper bounds. values are in same order as ensitivities % _____________pin_________________ ______Reg______ pinit = [ 10; 0.4; 0.4; 3; 0.05; 0.01; 0.1; 0.1; 0.05; 0.001; ]; plb = [ 10; 0.1; 0.1; 1; 0.05; 0.001; 1e-3; 1e-3; 1e-3 ; 1e-5]; pub = [100; 2. ; 2. ; 10; 1. ; 0.05; 1.; 1.; 1.; 1.;]; noise_level = 0.1; for i=1:128*128 noisy_data(:,i) = [addNoiseDefault(data,noise_level,scant)]; end for pool_idx =1 mat_pool_n = [31 16 8 4 2 1]; for test_idx = 1:5 matlabpool(mat_pool_n(pool_idx)); t0 = clock; for_times = 128*128; parfor i=1:for_times cm2 = set(cm, 'ExperimentalData', noisy_data(:,i)); pfit(:,i) = fit(cm2, pinit, plb, pub); end time_consumed_parfor(pool_idx,test_idx) = etime(clock,t0); matlabpool close; end end