Difference between revisions of "Support:Documents:Examples:Estimate physiological parameters using a physiologically based model"

From COMKAT wiki
Jump to navigation Jump to search
 
(15 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
===Overview===
 
===Overview===
  
To evalute glucose trasnport and phosphorylation in skeletal muscle,[http://online.medphys.org/resource/1/mphya6/v38/i8/p4587_s1 a physiologically based model] has been proposed by our group. The below figure shows the kinetics of a phosphorylatable glucsoe analog (e.g. <sup>18</sup>F-labeled 2-fluoro-2-deoxy-D-glucose) in skeletal muscle. The model has three tissue compartments with five rate constants.  
+
To evaluate glucose transport and phosphorylation in skeletal muscle, [http://online.medphys.org/resource/1/mphya6/v38/i8/p4587_s1 a physiologically based model] has been proposed by our group. Herein, we show an example of implementation of the proposed model using COMKAT software. In particular, the below example shows the implementation of the proposed model for a phosphorylatable glucose analog (e.g. 18F-labeled 2-fluoro-2-deoxy-D-glucose).  
  
 
[[Image:Example-fig.jpg]]
 
[[Image:Example-fig.jpg]]
  
Rate constants '''k'''<sub>'''1'''</sub> and '''k'''<sub>'''2'''</sub> describe the passive exhange of the glucose analog between plasma and interstitial space.
+
The above figure shows the kinetics of [<sup>18</sup>F]2FDG in skeletal muscle. The model has three tissue compartments with five rate constants.
 +
 
 +
The first compartment is the interstitial concentration of [<sup>18</sup>F]2FDG .
 +
 
 +
The second compartment is the intracellular concentration of [<sup>18</sup>F]2FDG .
 +
 
 +
The third compartment is the intracellular concentration of [<sup>18</sup>F]2FDG-6-P .
 +
 
 +
Rate constants '''k'''<sub>'''1'''</sub> and '''k'''<sub>'''2'''</sub> describe the passive exchange of the glucose analog between plasma and interstitial space.
  
 
Rate constants '''k'''<sub>'''3a'''</sub> and '''k'''<sub>'''4a'''</sub> describe the inward and backward transport of the glucose analog via glucose transporters.
 
Rate constants '''k'''<sub>'''3a'''</sub> and '''k'''<sub>'''4a'''</sub> describe the inward and backward transport of the glucose analog via glucose transporters.
Line 13: Line 21:
 
Rate constant '''k'''<sub>'''5a'''</sub> describe the phosphorylation of the intracellular glucose analog catalyzed by hexokinase.
 
Rate constant '''k'''<sub>'''5a'''</sub> describe the phosphorylation of the intracellular glucose analog catalyzed by hexokinase.
  
===Example of Implementation of the Physiologically Based Model===
+
===COMKAT Implementation of the Physiologically Based Model===
  
  
Here, we show an example of implementation of the proposed model using COMKAT.
+
==== Create a new model ====
 
<pre>
 
<pre>
 
cm=compartmentModel;
 
cm=compartmentModel;
Line 30: Line 38:
 
cm=addParameter(cm,'Fis',0.3);          % fraction of total space occupied by interstitial space
 
cm=addParameter(cm,'Fis',0.3);          % fraction of total space occupied by interstitial space
 
cm=addParameter(cm,'Fic','1-Fis-Fb');  % fraction of total space occupied by intracellular space
 
cm=addParameter(cm,'Fic','1-Fis-Fb');  % fraction of total space occupied by intracellular space
cm=addParameter(cm,'F',1);
 
  
 
cm=addParameter(cm,'Pg',6);    % Plasma glucose concentration (mM)
 
cm=addParameter(cm,'Pg',6);    % Plasma glucose concentration (mM)
Line 45: Line 52:
 
cm=addParameter(cm,'VH','(k1*Pg-k1*ISg)/(ICg/(KHg+ICg))'); % Maximal velocity of glucose phosphorylation for glucose and its analogs
 
cm=addParameter(cm,'VH','(k1*Pg-k1*ISg)/(ICg/(KHg+ICg))'); % Maximal velocity of glucose phosphorylation for glucose and its analogs
  
 +
% Define compartment
 +
cm=addCompartment(cm,'IS'); % interstitial
 +
cm=addCompartment(cm,'IC'); % intracellular
 +
cm=addCompartment(cm,'IP'); % intracellular phosphorylated
 +
cm=addCompartment(cm,'Junk');
 +
 +
% Define link
 +
cm=addLink(cm,'L','Cp','IS','k1');
 +
cm=addLink(cm,'K','IS','Junk','k2');
 +
cm=addLink(cm,'K','IS','IC','k3');
 +
cm=addLink(cm,'K','IC','IS','k4');
 +
cm=addLink(cm,'K','IC','IP','k5');
 +
</pre>
 +
 +
==== Specify the input, output and scan time====
 +
<pre>
 
% Specific activity (sa): if the unit of image data is the same with that of input function, the specific activity is 1.
 
% Specific activity (sa): if the unit of image data is the same with that of input function, the specific activity is 1.
 
cm=addParameter(cm,'sa',1);  
 
cm=addParameter(cm,'sa',1);  
Line 69: Line 92:
 
cm = addInput(cm, 'Cp', 'sa', 'dk', 'fengInputByPar','pfeng'); % Cp is the plasma input function
 
cm = addInput(cm, 'Cp', 'sa', 'dk', 'fengInputByPar','pfeng'); % Cp is the plasma input function
 
cm = addInput(cm, 'Ca',1,0, 'fengInputByPar', 'pfeng'); % Ca is the decay-corrected whole-blood input function. Herein, we assume that Cp=Ca.
 
cm = addInput(cm, 'Ca',1,0, 'fengInputByPar', 'pfeng'); % Ca is the decay-corrected whole-blood input function. Herein, we assume that Cp=Ca.
 
% Define compartment
 
cm=addCompartment(cm,'IS'); % interstitial
 
cm=addCompartment(cm,'IC'); % intracellular
 
cm=addCompartment(cm,'IP'); % intracellular phosphorylated
 
cm=addCompartment(cm,'Junk');
 
 
% Define link
 
cm=addLink(cm,'L','Cp','IS','k1');
 
cm=addLink(cm,'K','IS','Junk','k2');
 
cm=addLink(cm,'K','IS','IC','k3');
 
cm=addLink(cm,'K','IC','IS','k4');
 
cm=addLink(cm,'K','IC','IP','k5');
 
  
 
% Define output obtained from each normalized compartment
 
% Define output obtained from each normalized compartment
wlistTotal={'IS','F';'IC','F';'IP','F'};
+
wlistTotal={'IS',1;'IC',1;'IP',1};
 
xlistTotal={'Ca','Fb'};
 
xlistTotal={'Ca','Fb'};
 
cm=addOutput(cm,'TissueTotal',wlistTotal,xlistTotal);
 
cm=addOutput(cm,'TissueTotal',wlistTotal,xlistTotal);
 +
</pre>
 +
 +
Usually, the model outputs consist of compartments and weights with which they contribut to outputs (e.g. Fis*IS, Fic*IC, Fic*IP).
 +
 +
However, as described in detail in [http://online.medphys.org/resource/1/mphya6/v38/i8/p4587_s1 our published paper], tracer concentrations of all compartments (i.e. IS, IC and IP) in final model equations are normalized to total tissue space.
 +
 +
Accordingly, the weights of these compartment are 1.
  
 +
==== Solve the model output and Generate synthetic data====
 +
<pre>
 
[PET,PETIndex,Output,OutputIndex]=solve(cm);
 
[PET,PETIndex,Output,OutputIndex]=solve(cm);
 
% Define model parameters to be estimated
 
cm=addSensitivity(cm,'k1','ISg','ICg','Fis','Fb');
 
  
 
noise_level=0.05;
 
noise_level=0.05;
Line 102: Line 118:
  
 
cm = set(cm,'ExperimentalDataSD',sd);
 
cm = set(cm,'ExperimentalDataSD',sd);
 +
 +
figure;
 +
t = 0.5*(PET(:,1)+PET(:,2));
 +
plot(t,PET(:,3),'g-',t,data,'ro','LineWidth',2);
 +
xlabel('Time (minutes)');
 +
ylabel('Concentrations (uCi/mL)');
 +
legend('Noisy data','Noise-free data');
 +
</pre>
 +
 +
[[Image:Example11.jpg]]
 +
 +
==== Fit Data ====
 +
<pre>
 +
% Define model parameters to be estimated
 +
cm=addSensitivity(cm,'k1','ISg','ICg','Fis','Fb');
  
 
optsIRLS = setopt('SDModelFunction', @IRLSnoiseModel);
 
optsIRLS = setopt('SDModelFunction', @IRLSnoiseModel);
Line 116: Line 147:
  
 
[pfit, qfit, modelfit, exitflag, output, lambda, grad, hessian, objfunval] = fitGen(cm, pinit, plb, pub, 'IRLS');  
 
[pfit, qfit, modelfit, exitflag, output, lambda, grad, hessian, objfunval] = fitGen(cm, pinit, plb, pub, 'IRLS');  
 +
</pre>
  
figure;
+
====Results====
t = 0.5*(PET(:,1)+PET(:,2));
+
<pre>
plot(t,PET(:,3),'g-',t,data,'ro','LineWidth',2);
 
xlabel('Time (minutes)');
 
ylabel('Concentrations (uCi/mL)');
 
legend('Noisy data','Noise-free data');
 
 
 
 
figure;
 
figure;
 
t = 0.5*(PET(:,1)+PET(:,2));
 
t = 0.5*(PET(:,1)+PET(:,2));
Line 137: Line 164:
 
% Physiological parameters  
 
% Physiological parameters  
  
VG=(k1*ISg-k1*Pg)/(ICg/(KGg+ICg)-ISg/(KGg+ISg))       
+
VG=(k1*Pg-k1*ISg)/(ISg/(KGg+ISg)-ICg/(KGg+ICg))       
 
   
 
   
 
VH=(k1*Pg-k1*ISg)/(ICg/(KHg+ICg))             
 
VH=(k1*Pg-k1*ISg)/(ICg/(KHg+ICg))             
Line 145: Line 172:
 
CE=VG*ICg/(KGg+ICg)     
 
CE=VG*ICg/(KGg+ICg)     
 
                                
 
                                
PR=VH*ICg/(KHg+ICg)  
+
PR=VH*ICg/(KHg+ICg)                  
                           
 
 
</pre>
 
</pre>
  
===Results===
+
[[Image:Example12.jpg]]
 
 
[[Image:Example11.jpg]] [[Image:Example12.jpg]]
 

Latest revision as of 13:35, 29 August 2011

Estimation of Physiological Parameters Using a Physiologically Based Model

Overview

To evaluate glucose transport and phosphorylation in skeletal muscle, a physiologically based model has been proposed by our group. Herein, we show an example of implementation of the proposed model using COMKAT software. In particular, the below example shows the implementation of the proposed model for a phosphorylatable glucose analog (e.g. 18F-labeled 2-fluoro-2-deoxy-D-glucose).

Example-fig.jpg

The above figure shows the kinetics of [18F]2FDG in skeletal muscle. The model has three tissue compartments with five rate constants.

The first compartment is the interstitial concentration of [18F]2FDG .

The second compartment is the intracellular concentration of [18F]2FDG .

The third compartment is the intracellular concentration of [18F]2FDG-6-P .

Rate constants k1 and k2 describe the passive exchange of the glucose analog between plasma and interstitial space.

Rate constants k3a and k4a describe the inward and backward transport of the glucose analog via glucose transporters.

Rate constant k5a describe the phosphorylation of the intracellular glucose analog catalyzed by hexokinase.

COMKAT Implementation of the Physiologically Based Model

Create a new model

cm=compartmentModel;

% Define parameters
cm=addParameter(cm,'k1',0.1);                                             
cm=addParameter(cm,'k2','k1/Fis');                                        
cm=addParameter(cm,'k3','VG/(Fis*KGa+Fis*ISg*KGa/KGg)'); 
cm=addParameter(cm,'k4','VG/(Fic*KGa+Fic*ICg*KGa/KGg)'); 
cm=addParameter(cm,'k5','VH/(Fic*KHa+Fic*ICg*KHa/KHg)');  

cm=addParameter(cm,'Fb',0.02);         % fraction of total space occupied by blood
cm=addParameter(cm,'Fis',0.3);          % fraction of total space occupied by interstitial space
cm=addParameter(cm,'Fic','1-Fis-Fb');  % fraction of total space occupied by intracellular space

cm=addParameter(cm,'Pg',6);     % Plasma glucose concentration (mM)
cm=addParameter(cm,'ISg',5.4); % Interstitial glucose concentration (mM)
cm=addParameter(cm,'ICg',0.2); % Intracellular glucose concentration (mM)

cm=addParameter(cm,'KGg',3.5); % Michaelis constant (mM) of glucose transporter (GLUT) for glucose 
cm=addParameter(cm,'KHg',0.13); % Michaelis constant (mM) of hexokinase (HK) for glucose 

cm=addParameter(cm,'KGa',14); % Michaelis constant (mM) of GLUT for glucose analog 
cm=addParameter(cm,'KHa',0.17); % Michaelis constant (mM) of HK for glucose analog 

cm=addParameter(cm,'VG','(k1*Pg-k1*ISg)/(ISg/(KGg+ISg)-ICg/(KGg+ICg))'); % Maximal velocity of glucose transport for glucose and its analogs
cm=addParameter(cm,'VH','(k1*Pg-k1*ISg)/(ICg/(KHg+ICg))'); % Maximal velocity of glucose phosphorylation for glucose and its analogs

% Define compartment
cm=addCompartment(cm,'IS'); % interstitial 
cm=addCompartment(cm,'IC'); % intracellular
cm=addCompartment(cm,'IP'); % intracellular phosphorylated 
cm=addCompartment(cm,'Junk');

% Define link
cm=addLink(cm,'L','Cp','IS','k1');
cm=addLink(cm,'K','IS','Junk','k2');
cm=addLink(cm,'K','IS','IC','k3');
cm=addLink(cm,'K','IC','IS','k4');
cm=addLink(cm,'K','IC','IP','k5');

Specify the input, output and scan time

% Specific activity (sa): if the unit of image data is the same with that of input function, the specific activity is 1.
cm=addParameter(cm,'sa',1); 
% Usually, the decay time correction of image data is performed. So, dk is zero. 
cm=addParameter(cm,'dk',0);

% Define scan time (minutes)
delay = 0.0;
scanduration = 120; 

t=[ones(5,1)/30;ones(10,1)/12;ones(12,1)*0.5;ones(8,1);ones(21,1)*5];
scant = [[0;cumsum(t(1:(length(t)-1)))] cumsum(t)];
scanTime  = [scant(:,1),scant(:,2)];

cm = set(cm, 'ScanTime', scanTime);

lambda = [-12.02 -2.57 -0.02];

a = [1771.5 94.55 14.27];

cm = addParameter(cm, 'pfeng', [delay a lambda]');

% Define input function
cm = addInput(cm, 'Cp', 'sa', 'dk', 'fengInputByPar','pfeng'); % Cp is the plasma input function
cm = addInput(cm, 'Ca',1,0, 'fengInputByPar', 'pfeng'); % Ca is the decay-corrected whole-blood input function. Herein, we assume that Cp=Ca.

% Define output obtained from each normalized compartment
wlistTotal={'IS',1;'IC',1;'IP',1};
xlistTotal={'Ca','Fb'};
cm=addOutput(cm,'TissueTotal',wlistTotal,xlistTotal);

Usually, the model outputs consist of compartments and weights with which they contribut to outputs (e.g. Fis*IS, Fic*IC, Fic*IP).

However, as described in detail in our published paper, tracer concentrations of all compartments (i.e. IS, IC and IP) in final model equations are normalized to total tissue space.

Accordingly, the weights of these compartment are 1.

Solve the model output and Generate synthetic data

[PET,PETIndex,Output,OutputIndex]=solve(cm);

noise_level=0.05;

sd=noise_level*sqrt(PET(:,3)./(PET(:,2)-PET(:,1)));

data=sd.*randn(size(PET(:,3)))+PET(:,3);

cm=set(cm,'ExperimentalData',data);

cm = set(cm,'ExperimentalDataSD',sd);

figure;
t = 0.5*(PET(:,1)+PET(:,2));
plot(t,PET(:,3),'g-',t,data,'ro','LineWidth',2);
xlabel('Time (minutes)');
ylabel('Concentrations (uCi/mL)');
legend('Noisy data','Noise-free data');

Example11.jpg

Fit Data

% Define model parameters to be estimated
cm=addSensitivity(cm,'k1','ISg','ICg','Fis','Fb'); 

optsIRLS = setopt('SDModelFunction', @IRLSnoiseModel);
cm = set(cm, 'IRLSOptions', optsIRLS);

oo = optimset('TolFun', 1e-8, 'TolX', 1e-4,'Algorithm','interior-point');
cm = set(cm, 'OptimizerOptions', oo);

% Set initial conditions and bounds
%        k1,    ISg,   ICg,     Fs,     Fb
pinit = [0.01  ; 4.4 ; 0.1    ;0.15 ; 0.01];
plb   = [0.001; 1    ; 0.001;0.10 ; 0     ];
pub  = [0.5   ; 6    ; 1       ;0.60 ; 0.04];

[pfit, qfit, modelfit, exitflag, output, lambda, grad, hessian, objfunval] = fitGen(cm, pinit, plb, pub, 'IRLS'); 

Results

figure;
t = 0.5*(PET(:,1)+PET(:,2));
plot(t,data,'ro',t,modelfit,'b-','LineWidth',2);
xlabel('Time (minutes)');
ylabel('Concentrations (uCi/mL)');
legend('Noisy data', 'Model fit');

Pg=6;KGa=14;KHa=0.17;KGg=3.5;KHg=0.13; % Units are mM

k1=pfit(1);k2=pfit(1)/pfit(4);ISg=pfit(2);ICg=pfit(3);Fis=pfit(4);Fb=pfit(5);

% Physiological parameters 

VG=(k1*Pg-k1*ISg)/(ISg/(KGg+ISg)-ICg/(KGg+ICg))      
 
VH=(k1*Pg-k1*ISg)/(ICg/(KHg+ICg))            
           
CI=VG*ISg/(KGg+ISg)           
                           
CE=VG*ICg/(KGg+ICg)    
                               
PR=VH*ICg/(KHg+ICg)                   

Example12.jpg