Difference between revisions of "3D Reslicing using COMKAT image tool (basic)"

From COMKAT wiki
Jump to navigation Jump to search
 
(43 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
 
===Overview===
 
===Overview===
Reslicing a 3D (or 3D vs time) image dataset can be accomplished using various components of COMKAT including the function sliceVolume().  
+
Reslicing a 3D (or 3D vs time) image dataset can be accomplished using various components of COMKAT including the function sliceVolume() which is a method of ImageVolumeData.  
This example explains how to create an image be slicing from a volume at a position, plane orientation, and magnification specified by the user.
+
This example explains how to create a 2D image by sampling (slicing) from a volume at a position, plane orientation, and magnification specified by the user.
The approach is to load the image volume dataset into an instance oif an ImageVolumeData (abbreviated IVD) object and to use the sliceVolume() method.
+
The approach is to load the image volume dataset into an instance of an ImageVolumeData (abbreviated IVD) object and to use the sliceVolume() method.
  
 
====Background====
 
====Background====
 
sliceVolume() is a mex-file written in c with an interface to MATLAB that makes the operation particularly efficient.  COMKATImageTool uses sliceVolume() and you can use it too.
 
sliceVolume() is a mex-file written in c with an interface to MATLAB that makes the operation particularly efficient.  COMKATImageTool uses sliceVolume() and you can use it too.
 +
 +
[[Image:DICOM_coordinate_system.png]]
  
 
----
 
----
 
====Approach I. Demonstrate the method for coordinate transformations====
 
====Approach I. Demonstrate the method for coordinate transformations====
Create an instance of an IVD loaded with an image volume.
+
Create an instance of an IVD object and load it with an image volume.
  
 
   ivd = ImageVolumeData(); % create an instance of an ImageVolumeData object
 
   ivd = ImageVolumeData(); % create an instance of an ImageVolumeData object
 +
  ivd = read_DICOM(ivd, pathName, fileName); % load volume into an instance of IVD object;
 +
  
 +
Create lists of indices of all pixels in the 2D slice (rectangular grid) that we are creating.
  
Load an image volume data into ivd, e.g. by reading DICOM offline storage files.
+
  [i, j] = meshgrid(0 : Nc-1, 0 : Nr-1); % i and j will be 2D arrays, meshgrid is a function built into MATLAB
 +
  ij = [i(:)' ; j(:)'];  % make matrix, each column corresponding to a single pixel in the slice we are creating
  
  ivd = read_DICOM(ivd, pathName, fileName); % load volume into an instance of IVD object;
+
The first and second rows of ij are the indices corresponding to column and row indices of all voxels in the desired slice. So the dimension of ij is 3 x ( # of desired voxels ).
 +
 
 +
*Note: the first column of ij could be [ 0 ; 0 ] ; the second column could be [ 0 ; 1 ] , etc.
 +
 
 +
 
 +
 
 +
Then, we compute the physical x,y,z locations, in mm, from desired voxel indices according to the DICOM coordinate system ref [http://medical.nema.org/dicom/2004/04_03PU.PDF] p. 275.
 +
According the ref,  the coordinate transformation matrix, M, is listed as follows:
 +
[[Image:Eq_M.png]]
  
  
Create lists of indices of all pixels in the 2D slice (rectangular grid) that we are creating
+
The transformation matrix can be further separated into three parts.
  
  [i, j] = meshgrid(0 : Nc-1, 0 : Nr-1); % i and j will be 2D arrays, meshgrid is a function built into MATLAB
+
[[Image:Eq_M2.png]]
    ij = [c(:)’ ; r(:)’];  % make matrix, each column corresponding to a single pixel in the slice we are creating
 
  
The first and second rows of ij are the indices corresponding to column and row indices of all voxels in the desired slice. So the dimension of ij is 3 x ( # of desired voxels ).
 
For example, the first column of ij could be [ 0 ; 0 ] ; the second column could be [ 0 ; 1 ] , etc.
 
  
 +
Once we set the transformation matrix (or the orientation, pixel spacing, and image position matrices), we can use the transformation matrix to calculate the physical (mm) locations of each voxel in the desired slice.
 +
  xyz = M * ij;
 +
      or
 +
  xyz = M<sub>orientation</sub> * M<sub>spacing</sub> * ij + M<sub>position</sub>  ;
 +
 
 +
  *  xyz is a matrix consisted of three rows the physical x, y, and z location (m) of all the desired voxels. The dimension of xyz is 3 x ( # of desired voxels ).
  
Compute the physical x,y,z locations, in mm, from pixel indices according to the DICOM coordinate system ref [http://medical.nema.org/dicom/2004/04_03PU.PDF] p. 275.
+
These xyz locations are the same as those in the image volume being sliced to make the 2D image.  From these xyz locations, we find the corresponding 3D indices, (u,v,w), in the volume.  This uses the transformation matrix for the volume, Mhat, that relates the indices to the xyz physical location. This is analogous to M used for the desired slice but here the pixel spacing, orientation, and position indicate how the volume data are stored.
This is a two-step process.  The first step is to compute the coordinate transformation matrix.  Note that pixel spacing/zoom, orientation, and position for the slice are specified in the transformation matrix.
 
  
  M = ( Insert the method for generating the transformation matrix );
+
The spatial mapping between the indices in the original image volume (uvw) and xyz can be described as
  
 +
  xyz = Mhat * uvw;
  
The second step is to use the transformation matrix to calculate the physical (mm) location of each pixel in the desired slice
+
Therefore, Mhat is the matrix mapping  uvw  to its physical location (mm) and can be separated into three parts, M'<sub>orientation</sub>, M'<sub>spacing</sub>, and M'<sub>position</sub>, as done for the transformation M.
 +
* Note: M'<sub>orientation</sub>, M'<sub>spacing</sub>, and M'<sub>position</sub> are the mapping matrices between  uvw  and  xyz  which are different from the mapping matrices between  ij  and  xyz.
  
  xyz = M * ij;  % xyz is a matrix consisted of three rows the physical x, y, and z location (m) of all the desired voxels. The dimension of xyz is 3 x ( # of desired voxels ).
 
  
 +
The indices of the desired slice can be calculated by performing the inverse mapping.
  
These xyz locations are the same as those in the image volume that is being sliced to make the 2D image.  From these xyz locations, we find the corresponding 3D indices, (u,v,w), into the volume.  This uses the transformation matrix for the volume, Mhat, that relates the indices to the xyz physical location.  This is analogous to M used for the desired slice but here the pixel spacing, orientation, and position indicate how the volume data are stored.
+
  uvw =  inv( Mhat ) * xyz;   
 +
      or
 +
  uvw = inv( M'<sub>spacing</sub> ) * inv( M'<sub>orientation</sub> ) * (xyz - M'<sub>position</sub> ) ;
 +
 
 +
  * uvw is the matrices consisted of the indices in the domain of the original volume and is consisted of three rows corresponding to row, column, and plane indices of the original volume data.
 +
      The dimension of uvw is identical of that of xyz.
  
Specify the matrix for reverse mapping ( index space of the original image volume (uvw) --> xyz )
 
  
  Mhat = ( Insert the method for generate the mapping);
+
In order to use sliceVolume() to do the interpolation, we need to separate uvw into the components
 +
    u = ( row indices in the domain of original of volume data );
 +
    v = ( column indices in the domain of original of volume data );
 +
    w = ( plane indices in the domain of original of volume data );
 +
 
 +
    *Note: the u, v, w are the first, second, and third rows of uvw.
  
  
Calculate voxel indcies into the volume corresponding to xyz physical location
+
Before doing the final step, interpolation, we have to set a unscaled raw background value of images, rawbackgroundPixelValue. The value is used for the interpolation when it is nothing there for calculating the interpolation value.
  
  uvw inv( Mhat ) * xyz;   % uvw is the matrices consisted of the indices in the domain of the original volume
+
In gerneral, rawbackgroundPixelValue = (scaled_pixel_value - rescale_intercept) / (rescale_slope) ;
uvw is a matrix consisted of three rows corresponding to row, column, and plane indices of the original volume data. The dimension of uvw is identical of the dimension of xyz.
 
  
Separate uvw into the components
+
For PET images, the scaled background value is usually zero.  
    u = ( row indices in the domain of original of volume data )
 
    v = ( column indices in the domain of original of volume data )
 
    w = ( plane indices in the domain of original of volume data )
 
Therefore, the u, v, w are the first, second, and third rows of uvw.
 
  
 +
==>    rawbackgroundPixelValue  = ( 0 - rescale_intercept) / rescale_slope ;
  
Use sliceVolume() to interpolate the slice
+
So rawbackgroundPixelValue can be calculated as follows:
  
   slice = sliceVolume(idv, v, u, w, backgroundPixelValue, ‘linear);
+
   s = get( ivd, 'VolumeFrameBufferScaleFactor');           % rescale_slope
backgroundPixelValue is the original (raw) background value of the IDV
+
  o = get( ivd, 'VolumeFrameBufferRescaleIntercept');  % rescale_intercept
Due the background value of scaled voxel is equal to zero,
+
 
==>   0 = scaledVoxel = rawVoxel * s + o --> rawVoxel = - o / s ;
+
   rawbackgroundPixelValue  = - o / s;
  
So backgroundPixelValue can be calculated as follows:
 
  
  s = get( ivd, 'VolumeFrameBufferScaleFactor');          % scale factor for displaying images
+
Finally, we use sliceVolume() to interpolate the desired slice
  o = get( ivd, 'VolumeFrameBufferRescaleIntercept');  % Intercept for displaying images
 
  backgroundPixelValue  = - o / s;
 
  
Display new slice
+
  slice = sliceVolume(idv, v, u, w, rawbackgroundPixelValue , 'linear'); 
  
  figure, imagesc(slice); axis image % isotropic
 
  
  
Line 86: Line 105:
 
Read the image volume into an ImageVolumeData object
 
Read the image volume into an ImageVolumeData object
  
   ivd = ( Insert the method for reading data );
+
   ivd = ( read data into IVD);
  
  
Line 92: Line 111:
  
 
   [u, v, w] = coordinateGen(ivd, Nc, Nr, pixelSpacing, planePos, orientation); % Input the desired pixelSpacing, planePos and orientation matrices
 
   [u, v, w] = coordinateGen(ivd, Nc, Nr, pixelSpacing, planePos, orientation); % Input the desired pixelSpacing, planePos and orientation matrices
 +
 
 +
  *Note: pixelSpacing, planPos, and orientation are the M<sub>spacing</sub>, M<sub>position</sub>, and M<sub>orientation</sub>, respectively.
 +
 +
Use sliceVolume() to interpolate
 +
 +
  slice = sliceVolume(idv, v, u, w, backgroundPixelValue, 'linear');
 +
 +
 +
 +
 +
----
 +
----
 +
====Examples (Cardiac-PET)====
 +
We're going to describe four examples. The approach I is going to be used to generate the new slice in the first example, and we'll use the approach II to accomplish the others.
 +
A set of DICOM cardiac-PET data is going to be used in those examples.
 +
 +
 +
=====Obtain a new slice=====
 +
First, let's use the approach I to obtain a new slice.
 +
 +
  ivd = ImageVolumeData(); % create an instance of an ImageVolumeData object
 +
  ivd = read_DICOM(ivd, pathName, fileName); % load DICOM volume into an instance of IVD object
 +
 +
 +
To obtain a new slice, we need to specific the number of rows and columns in the new image.
 +
  Nc = 370;  % # of columns
 +
  Nr = 370;  % # of rows
 +
 +
 +
Create the indices of each voxel in the desired slice.
 +
  [i, j] = meshgrid(0 : Nc-1, 0 : Nr-1);
 +
      ij = [i(:)’ ; j(:)’];
 +
 +
 +
Specify the sampling pixel size and the position of sampling plane.
 +
  pixelSize = [1.5501; 1.5501];  % Set pixel size (mm)
 +
 
 +
  planePosOrg = [-0.7751; -0.7751; 88.0000];  % Set the reslicing plane location
 +
 +
 +
 +
Set the orientation and pixel spacing matrix.
 +
  orientationInput = [1, 0;
 +
                                  0, 1;
 +
                                  0, 0];   
 +
 
 +
  pixelSpacingOrg = diag([pixelSize(2), pixelSize(1)]);
 +
 +
 +
As mentioned in the approach I, we need to map the indies from  ij  to  xyz  by using the transformation matrix, M.
 +
  xyz = orientationInput * pixelSpacingOrg* ij + repmat(planePosOrg ,1 , Nr * Nc);
 +
 +
 +
 +
After obtaining the physical locations of each index, we need to calculate the indices of each voxel in the original volume space to perform inverse mapping approach.
 +
 +
As we mentioned in the approach I, the matrices used for inverse mapping are different from the matrices mapping from  ij  to  xyz. For this reason, we need to obtain the original pixel size, orientation, and image position matrices for the inverse mapping (you can specify your original volume information. Here we use function get() to obtain the information we need from the IVD).
 +
  [ny, nx, nz, nf] = get(ivd, 'VolumeDimension');
 +
  pixDim = get(ivd, 'PixelSpacing');  % get pixelSpacing
 +
  vol_Uspacing = pixDim(2);
 +
  vol_Vspacing = pixDim(1);
 +
  vol_Wspacing = pixDim(3);
 +
 
 +
  vol_pos  = get(ivd, 'ImagePositionPatient');  % get patient position
 +
  vol_orient  = get(ivd, 'ImageOrientationPatient');  % get orientation
 +
 +
 +
Therefore, the inverse mapping from the matrix  xyz  to  uvw  can be done as it has been described in the approach I.
 +
  uvw =  diag([1./vol_Uspacing, 1./vol_Vspacing, 1./vol_Wspacing]) * inv(vol_orient) * ( xyz - repmat(vol_pos, 1, Nr * Nc) );
 +
 
 +
  * Note: uvw is a matrix consisted of indices in the original image space.
 +
 +
 +
In order to use sliceVolume() to do the interpolation, we need to separate uvw in three matrices.
 +
  u =  ( reshape(uvw(1,:), [Nr, Nc]) ) + 1;
 +
  v =  ( reshape(uvw(2,:), [Nr, Nc]) ) + 1;
 +
  w =  ( reshape(uvw(3,:), [Nr, Nc]) ) + 1;
 +
 
 +
  * Note: the indices in original image volume are defined to start from 1. After performing the inverse mapping, the indices need to be added by 1.
 +
 +
 +
 +
As we described before, the raw background value of PET can be calculated as follows:
 +
 +
  s = get(ivd, 'VolumeFrameBufferScaleFactor');
 +
  o = get(ivd, 'VolumeFrameBufferRescaleIntercept');
 +
 
 +
  rawBackgroundPixelValue = -o/s;
 +
 +
 +
Finally, we can interpolate the new slice using sliceVolume(). 
 +
  slice = sliceVolume(ivd, v , u , w, rawBackgroundPixelValue, 'linear');
 +
 +
 +
Show the new slice (the new image can be seen the first image in the figure).
 +
  figure, imagesc(slice), axis image, colormap(hot) % show org image
  
  
Use sliceVolume() to interpolate
+
----
 +
=====Zooming=====
 +
We're going to use the approach II to zoom-in the slice in a factor of three.
 +
 
 +
 
 +
Set the zoom factor.
 +
  zoomFactor = 3;  % set zoom factor
 +
 
 +
 
 +
Calculate the new pixel size.
 +
  pixelSpacing = pixelSpacingOrg / zoomFactor;  % adjust pixel size
 +
 
 +
 
 +
 
 +
After zooming  you may need to translate the image center, or you may see nothing.
 +
  originalFOV = [Nc; Nr] .* pixelSpacingOrg;  % calculate the original FOV (mm)
 +
  zoomShift = originalFOV / 2 * (zoomFactor - 1) / zoomFactor ;
 +
  planePos = planePosOrg + [zoomShift ; 0] ; 
 +
 
 +
 
 +
Generate new slice using coordinateGen() and sliceVolume().
 +
  [u, v, w] = coordinateGen(ivd, Nc, Nr, pixelSpacing, planePos, orientationInput);
 +
 
 +
  slice = sliceVolume(ivd, v , u , w, rawBackgroundPixelValue,'linear');
 +
 
 +
 
 +
Show the new slice.
 +
  figure, imagesc(slice), axis image, colormap(hot) % show org +zoom
 +
 
 +
 
 +
The new slice is the second image in the figure. It required fewer lines when coding using the approach II.
 +
 
 +
 
 +
----
 +
=====Translation=====
 +
Let's try to do the translation using the approach II.
 +
 
 +
 
 +
First of all, set the translation matrix.
 +
  transMat = [-35.0; -5; 0];  % the translation in x, y, and z directions
 +
 
 +
 
 +
Apply the translation matrix to obtain new plane position.
 +
  planePosTrans = planePos + transMat;
 +
 
 +
 
 +
Generate new slice.
 +
  [u, v, w] = coordinateGen(ivd, Nc, Nr, pixelSpacing, planePosTrans, orientationInput);
 +
 
 +
  slice = sliceVolume(ivd, v , u , w, rawBackgroundPixelValue,'linear');
 +
 
 +
 
 +
Show the new slice.
 +
  figure, imagesc(slice), axis image, colormap(hot) % show org +zoom+translation
 +
 
 +
 
 +
The third picture in the figure is the result of the new slice.
 +
 
 +
 
 +
----
 +
=====Rotation=====
 +
In this example, we're going to rotate the original image (counter-clockwise).
 +
 
 +
 
 +
Set the angle we want to rotate.
 +
  rotAngle = 25/180*pi;  % rotate 25 degree
 +
 
 +
 
 +
 
 +
Firstly, we create the rotation matrix. You can find more detail about the rotation matrix in [http://en.wikipedia.org/wiki/Rotation_matrix].
 +
Let's try to rotate the image counter-clockwisely about z-axis.
 +
  rotMat= [ cos(rotAngle), -sin(rotAngle),      0 ;
 +
                  sin(rotAngle),  cos(rotAngle),      0 ;
 +
                                    0,                    0,      1 ];
 +
 
 +
 
 +
By combining the rotation matrix and the original orientation marix, we will get a new orientation matrix with rotation.
 +
  orientationInputRot = rotMat * orientationInput;
 +
 
 +
 
 +
After rotation, we adjust the center of the rotated image.
 +
  newFOV = [Nc; Nr] .* pixelSpacing;
 +
  transMat2 = orientationInputRot([1, 2], [1,2]) * ( newFOV / 2 ) - newFOV / 2;  % calculate the translation of the original center after rotation
 +
  planePosTrans2 = planePosTrans - [transMat2 ; 0];  % backward translating the rotated image center
 +
 
 +
 
 +
Generate new slice.
 +
  [u, v, w] = coordinateGen(ivd, Nc, Nr, pixelSpacing, planePosTrans2, orientationInputRot);
 +
  slice = sliceVolume(ivd, v , u , w, rawBackgroundPixelValue,'linear');
 +
 
 +
 
 +
Show the new slice (the new slice can be seen in the fourth image in the figure).
 +
  figure, imagesc(slice), axis image, colormap(hot) % show org+zoom+translate+rotate
 +
 
  
  slice = sliceVolume(idv, v, u, w, backgroundPixelValue, ‘linear);
 
  
  
Display slice
+
----
  
  figure, imagesc(slice); axis image % isotropic
+
The results of the slicing images:
  
 +
[[Image:Fig_eg3Dslicing.png]]
  
PASTE IN example image
 
 
----
 
----

Latest revision as of 16:09, 16 August 2018

Reslicing 3D image volume using COMKAT image tool (basic)

Overview

Reslicing a 3D (or 3D vs time) image dataset can be accomplished using various components of COMKAT including the function sliceVolume() which is a method of ImageVolumeData. This example explains how to create a 2D image by sampling (slicing) from a volume at a position, plane orientation, and magnification specified by the user. The approach is to load the image volume dataset into an instance of an ImageVolumeData (abbreviated IVD) object and to use the sliceVolume() method.

Background

sliceVolume() is a mex-file written in c with an interface to MATLAB that makes the operation particularly efficient. COMKATImageTool uses sliceVolume() and you can use it too.

DICOM coordinate system.png


Approach I. Demonstrate the method for coordinate transformations

Create an instance of an IVD object and load it with an image volume.

  ivd = ImageVolumeData(); % create an instance of an ImageVolumeData object
  ivd = read_DICOM(ivd, pathName, fileName); % load volume into an instance of IVD object;


Create lists of indices of all pixels in the 2D slice (rectangular grid) that we are creating.

  [i, j] = meshgrid(0 : Nc-1, 0 : Nr-1); % i and j will be 2D arrays, meshgrid is a function built into MATLAB
  ij = [i(:)' ; j(:)'];  % make matrix, each column corresponding to a single pixel in the slice we are creating

The first and second rows of ij are the indices corresponding to column and row indices of all voxels in the desired slice. So the dimension of ij is 3 x ( # of desired voxels ).

  • Note: the first column of ij could be [ 0 ; 0 ] ; the second column could be [ 0 ; 1 ] , etc.


Then, we compute the physical x,y,z locations, in mm, from desired voxel indices according to the DICOM coordinate system ref [1] p. 275. According the ref, the coordinate transformation matrix, M, is listed as follows: Eq M.png


The transformation matrix can be further separated into three parts.

Eq M2.png


Once we set the transformation matrix (or the orientation, pixel spacing, and image position matrices), we can use the transformation matrix to calculate the physical (mm) locations of each voxel in the desired slice.

  xyz = M * ij; 
      or
  xyz = Morientation * Mspacing * ij + Mposition  ; 
  
  *  xyz is a matrix consisted of three rows the physical x, y, and z location (m) of all the desired voxels. The dimension of xyz is 3 x ( # of desired voxels ).

These xyz locations are the same as those in the image volume being sliced to make the 2D image. From these xyz locations, we find the corresponding 3D indices, (u,v,w), in the volume. This uses the transformation matrix for the volume, Mhat, that relates the indices to the xyz physical location. This is analogous to M used for the desired slice but here the pixel spacing, orientation, and position indicate how the volume data are stored.

The spatial mapping between the indices in the original image volume (uvw) and xyz can be described as

  xyz = Mhat * uvw;

Therefore, Mhat is the matrix mapping uvw to its physical location (mm) and can be separated into three parts, M'orientation, M'spacing, and M'position, as done for the transformation M.

  • Note: M'orientation, M'spacing, and M'position are the mapping matrices between uvw and xyz which are different from the mapping matrices between ij and xyz.


The indices of the desired slice can be calculated by performing the inverse mapping.

  uvw =  inv( Mhat ) * xyz;    
      or
  uvw = inv( M'spacing ) * inv( M'orientation ) * (xyz - M'position ) ; 
  
  * uvw is the matrices consisted of the indices in the domain of the original volume and is consisted of three rows corresponding to row, column, and plane indices of the original volume data.
     The dimension of uvw is identical of that of xyz.


In order to use sliceVolume() to do the interpolation, we need to separate uvw into the components

    u = ( row indices in the domain of original of volume data );
    v = ( column indices in the domain of original of volume data );
   w = ( plane indices in the domain of original of volume data );
  
   *Note: the u, v, w are the first, second, and third rows of uvw.


Before doing the final step, interpolation, we have to set a unscaled raw background value of images, rawbackgroundPixelValue. The value is used for the interpolation when it is nothing there for calculating the interpolation value.

In gerneral, rawbackgroundPixelValue = (scaled_pixel_value - rescale_intercept) / (rescale_slope) ;

For PET images, the scaled background value is usually zero.

==>    rawbackgroundPixelValue  = ( 0 - rescale_intercept) / rescale_slope ;

So rawbackgroundPixelValue can be calculated as follows:

  s = get( ivd, 'VolumeFrameBufferScaleFactor');           % rescale_slope
  o = get( ivd, 'VolumeFrameBufferRescaleIntercept');  % rescale_intercept
  
  rawbackgroundPixelValue  = - o / s;


Finally, we use sliceVolume() to interpolate the desired slice

  slice = sliceVolume(idv, v, u, w, rawbackgroundPixelValue , 'linear');  




Approach II. Use coordinateGen() to do the coordinate transformation

  • This should create same result as approach I but require fewer lines of coding since coordinateGen() does most things that are needed.


Read the image volume into an ImageVolumeData object

  ivd = ( read data into IVD);


Use coordinateGen() to generate uvw

  [u, v, w] = coordinateGen(ivd, Nc, Nr, pixelSpacing, planePos, orientation); % Input the desired pixelSpacing, planePos and orientation matrices
  
  *Note: pixelSpacing, planPos, and orientation are the Mspacing, Mposition, and Morientation, respectively.

Use sliceVolume() to interpolate

  slice = sliceVolume(idv, v, u, w, backgroundPixelValue, 'linear');





Examples (Cardiac-PET)

We're going to describe four examples. The approach I is going to be used to generate the new slice in the first example, and we'll use the approach II to accomplish the others. A set of DICOM cardiac-PET data is going to be used in those examples.


Obtain a new slice

First, let's use the approach I to obtain a new slice.

  ivd = ImageVolumeData(); % create an instance of an ImageVolumeData object
  ivd = read_DICOM(ivd, pathName, fileName); % load DICOM volume into an instance of IVD object


To obtain a new slice, we need to specific the number of rows and columns in the new image.

  Nc = 370;  % # of columns
  Nr = 370;  % # of rows


Create the indices of each voxel in the desired slice.

  [i, j] = meshgrid(0 : Nc-1, 0 : Nr-1);
      ij = [i(:)’ ; j(:)’]; 


Specify the sampling pixel size and the position of sampling plane.

  pixelSize = [1.5501; 1.5501];   % Set pixel size (mm)
  
  planePosOrg = [-0.7751; -0.7751; 88.0000];   % Set the reslicing plane location


Set the orientation and pixel spacing matrix.

  orientationInput = [1, 0; 
                                 0, 1;
                                 0, 0];     
  
  pixelSpacingOrg = diag([pixelSize(2), pixelSize(1)]);


As mentioned in the approach I, we need to map the indies from ij to xyz by using the transformation matrix, M.

  xyz = orientationInput * pixelSpacingOrg* ij + repmat(planePosOrg ,1 , Nr * Nc);


After obtaining the physical locations of each index, we need to calculate the indices of each voxel in the original volume space to perform inverse mapping approach.

As we mentioned in the approach I, the matrices used for inverse mapping are different from the matrices mapping from ij to xyz. For this reason, we need to obtain the original pixel size, orientation, and image position matrices for the inverse mapping (you can specify your original volume information. Here we use function get() to obtain the information we need from the IVD).

  [ny, nx, nz, nf] = get(ivd, 'VolumeDimension'); 
  pixDim = get(ivd, 'PixelSpacing');  % get pixelSpacing
  vol_Uspacing = pixDim(2);
  vol_Vspacing = pixDim(1);
  vol_Wspacing = pixDim(3);
  
  vol_pos  = get(ivd, 'ImagePositionPatient');  % get patient position
  vol_orient  = get(ivd, 'ImageOrientationPatient');  % get orientation


Therefore, the inverse mapping from the matrix xyz to uvw can be done as it has been described in the approach I.

  uvw =  diag([1./vol_Uspacing, 1./vol_Vspacing, 1./vol_Wspacing]) * inv(vol_orient) * ( xyz - repmat(vol_pos, 1, Nr * Nc) );
  
  * Note: uvw is a matrix consisted of indices in the original image space.


In order to use sliceVolume() to do the interpolation, we need to separate uvw in three matrices.

  u =  ( reshape(uvw(1,:), [Nr, Nc]) ) + 1;
  v =  ( reshape(uvw(2,:), [Nr, Nc]) ) + 1;
  w =  ( reshape(uvw(3,:), [Nr, Nc]) ) + 1;
  
  * Note: the indices in original image volume are defined to start from 1. After performing the inverse mapping, the indices need to be added by 1.


As we described before, the raw background value of PET can be calculated as follows:

  s = get(ivd, 'VolumeFrameBufferScaleFactor');
  o = get(ivd, 'VolumeFrameBufferRescaleIntercept');
  
  rawBackgroundPixelValue = -o/s;


Finally, we can interpolate the new slice using sliceVolume().

  slice = sliceVolume(ivd, v , u , w, rawBackgroundPixelValue, 'linear');


Show the new slice (the new image can be seen the first image in the figure).

  figure, imagesc(slice), axis image, colormap(hot) % show org image



Zooming

We're going to use the approach II to zoom-in the slice in a factor of three.


Set the zoom factor.

  zoomFactor = 3;  % set zoom factor


Calculate the new pixel size.

  pixelSpacing = pixelSpacingOrg / zoomFactor;  % adjust pixel size


After zooming you may need to translate the image center, or you may see nothing.

  originalFOV = [Nc; Nr] .* pixelSpacingOrg;  % calculate the original FOV (mm)
  zoomShift = originalFOV / 2 * (zoomFactor - 1) / zoomFactor ;
  planePos = planePosOrg + [zoomShift ; 0] ;   


Generate new slice using coordinateGen() and sliceVolume().

  [u, v, w] = coordinateGen(ivd, Nc, Nr, pixelSpacing, planePos, orientationInput);
  
  slice = sliceVolume(ivd, v , u , w, rawBackgroundPixelValue,'linear');


Show the new slice.

  figure, imagesc(slice), axis image, colormap(hot) % show org +zoom


The new slice is the second image in the figure. It required fewer lines when coding using the approach II.



Translation

Let's try to do the translation using the approach II.


First of all, set the translation matrix.

  transMat = [-35.0; -5; 0];  % the translation in x, y, and z directions


Apply the translation matrix to obtain new plane position.

  planePosTrans = planePos + transMat; 


Generate new slice.

  [u, v, w] = coordinateGen(ivd, Nc, Nr, pixelSpacing, planePosTrans, orientationInput);
  
  slice = sliceVolume(ivd, v , u , w, rawBackgroundPixelValue,'linear');


Show the new slice.

  figure, imagesc(slice), axis image, colormap(hot) % show org +zoom+translation


The third picture in the figure is the result of the new slice.



Rotation

In this example, we're going to rotate the original image (counter-clockwise).


Set the angle we want to rotate.

  rotAngle = 25/180*pi;   % rotate 25 degree


Firstly, we create the rotation matrix. You can find more detail about the rotation matrix in [2]. Let's try to rotate the image counter-clockwisely about z-axis.

  rotMat= [ cos(rotAngle), -sin(rotAngle),       0 ;
                  sin(rotAngle),  cos(rotAngle),       0 ;
                                    0,                     0,       1 ];


By combining the rotation matrix and the original orientation marix, we will get a new orientation matrix with rotation.

  orientationInputRot = rotMat * orientationInput;


After rotation, we adjust the center of the rotated image.

  newFOV = [Nc; Nr] .* pixelSpacing;
  transMat2 = orientationInputRot([1, 2], [1,2]) * ( newFOV / 2 ) - newFOV / 2;  % calculate the translation of the original center after rotation
  planePosTrans2 = planePosTrans - [transMat2 ; 0];  % backward translating the rotated image center


Generate new slice.

  [u, v, w] = coordinateGen(ivd, Nc, Nr, pixelSpacing, planePosTrans2, orientationInputRot);
  slice = sliceVolume(ivd, v , u , w, rawBackgroundPixelValue,'linear');


Show the new slice (the new slice can be seen in the fourth image in the figure).

  figure, imagesc(slice), axis image, colormap(hot) % show org+zoom+translate+rotate




The results of the slicing images:

Fig eg3Dslicing.png