Difference between revisions of "Support:Documents:Examples:K-Means and Fuzzy C-Means analysis"

From COMKAT wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
=K-Means and Fuzzy C-Means=
 
=K-Means and Fuzzy C-Means=
In COMKAT R4.0a, you can analyze images by K-Means or Fuzzy C-Means.
+
In COMKAT R4.0a, you can analyze images by K-Means or Fuzzy C-Means clustering.
  
  
1.Image >Clustering
+
1.Select  Image > Clustering
  
 
[[Image:K_Fuzzy_Means_1.png]]
 
[[Image:K_Fuzzy_Means_1.png]]
Line 13: Line 13:
  
  
3.If you select Fuzzy C-means, you can choose the output Labels or Probability Maps /membership function :
+
3.If you select Fuzzy C-means, you can output Labels or Probability Maps /membership functions :
  
 
[[Image:K_Fuzzy_Means_3.png]]
 
[[Image:K_Fuzzy_Means_3.png]]
  
  
4.Number of clusters
+
4.Assign number of clusters
  
 
[[Image:K_Fuzzy_Means_4.png]]
 
[[Image:K_Fuzzy_Means_4.png]]
  
  
5.If your images are several MR contrast (muti-bands), you can also analyze a particular band alone by unchecking the checkbox as follows:
+
5.If your images are several MR contrast (muti-bands), you can also analyze band-2 and band-3 by unchecking the checkbox as follows:
  
[[Image:K_Fuzzy_Means_5.png]]
+
[[Image:K_Fuzzy_Means_12.png]]
 +
 
 +
 
 +
 
 +
==Examples==
 +
Here  we use Fuzzy C-means for an example.
 +
 
 +
 
 +
1.Load phantom imge:
 +
<pre>
 +
a= phantom(256);
 +
b= phantom(256);
 +
c= cat(3,a,b);          % COMKAT do not read 2-D image
 +
comkatimagetool(c)
 +
</pre>
 +
 
 +
2.Select  Colormap > GreenFire
 +
 
 +
[[Image:K_Fuzzy_Means_6.png]]
 +
 
 +
 
 +
3.Select  Image > Clustering
 +
 
 +
[[Image:K_Fuzzy_Means_7.png]]
 +
 
 +
 
 +
4.Set as follows:
 +
 
 +
[[Image:K_Fuzzy_Means_8.png]]
 +
 
 +
5.Results
 +
 
 +
[[Image:K_Fuzzy_Means_13.png]]

Latest revision as of 21:08, 4 August 2015

K-Means and Fuzzy C-Means

In COMKAT R4.0a, you can analyze images by K-Means or Fuzzy C-Means clustering.


1.Select Image > Clustering

K Fuzzy Means 1.png


2.You can select K-Means or Fuzzy C-Means here:

K Fuzzy Means 2.png


3.If you select Fuzzy C-means, you can output Labels or Probability Maps /membership functions :

K Fuzzy Means 3.png


4.Assign number of clusters

K Fuzzy Means 4.png


5.If your images are several MR contrast (muti-bands), you can also analyze band-2 and band-3 by unchecking the checkbox as follows:

K Fuzzy Means 12.png


Examples

Here we use Fuzzy C-means for an example.


1.Load phantom imge:

a= phantom(256);
b= phantom(256);
c= cat(3,a,b);           % COMKAT do not read 2-D image
comkatimagetool(c)

2.Select Colormap > GreenFire

K Fuzzy Means 6.png


3.Select Image > Clustering

K Fuzzy Means 7.png


4.Set as follows:

K Fuzzy Means 8.png

5.Results

K Fuzzy Means 13.png